
Scripting, Error Handling

and Debugging in

Windows PowerShell

Jeffery Hicks
Prof. PowerShell

Pre-requisites for this presentation:

 1) Basic PowerShell Experience

 2) Some Scripting Experience will help

Level: Intermediate

Agenda

 Why Script?

 Functions or Scripts?

 Scripts as Tools

 Construct Review

 Error Handling and Traps

 A PowerShell v1 Function

 Scripting PowerShell 2.0

 Debugging

 Putting It All Together

 Best Practices

Sorry..

 We won’t be covering these topics
– Modules

– Windows Form based scripts

– Script security

– Comment Based Help

– Trace-Command

 But, demos will be available on my blog

Why Script?

 Saves typing

 Automate complex tasks

 Share the love

Functions or Scripts?

 Both can accept parameters

 Functions can be written like cmdlets

 Use Functions to modularize

 Use Scripts to organize

Parameters

 Customize a function or script

 Makes your code re-usable

 Positional by default

 Cast parameters

 Provide default values

Parameters

Function Foo {

 Param ([string]$name,[int]$x=3)

 #your code

}

Foo jeff 5

Foo 5

Foo –name jeff –x 5

Simple Function

 Let’s look at a simple basic function

Functions and the Pipeline

 Begin {}

 Process { $_ }

 End {}

 Scriptblock use is optional

Function Pipeline Demo

Functions or Filters

 A filter is a function with another name

 To pipeline or not, that is the question

 In v2 it’s basically all functions

Constructs

 If..(..ElseIf..)..Else

 Switch

 Do While/Until

 For

 ForEach

If

If (some condition is true) {

 #do this code

}

 No End If

 Bracket positions don’t matter

If Else

If (some condition is true) {

 #do this code

}

Else {

 #do this code

}

If ElseIf

If (some condition is true) {

 #do this code }

Elseif (some condition is true) {

 #do this code }

Else {

 #do this code }

 No limit to number of ElseIf

 Only first matching code block executes

Switch

Switch (some variable) {

 A {#run this code if variable
matches}

 B {#run this code if variable
matches}

 C {#run this code if variable
matches}

 Default {#run this code if no
matches}

}

Switch

 Useful for multiple condition matching

 Supports regular expressions

 Can be used like Select Case

 Default only runs if no match is made

 Help about_switch

Do While

Do {

 #run this code

} While (some condition is true)

 Script block will always execute at least once

 Make sure your condition will change

Do Until

Do {

 #run this code

} Until (some condition is true)

 Script block will always execute at least once

 Make sure your condition will change

While

While (some condition is true) {

 #run this code

}

 Script block may not run

 Make sure your condition will change

For

For ($i=0;$i –lt 5;$i++) {

 $i

 #do something

}

 Always define starting condition

 Make sure your condition can be met

ForEach

$items=get-childitem $env:temp

Foreach ($x in $items) {

 #do something with $x

 write $x.name

}

 VBScript Like

 Easier to understand

 Name your own variable

ForEach Pipeline Alternative

get-childitem $env:temp | Foreach {

 #do something with each object

 write $_.name

}

Error Handling and Trapping

 Errors are Exceptions

 Separate the error message from the
exception

 You can only trap exceptions

Error Action

 $errorActionPreference

 -ErrorActionPreference (-ea)
– Continue

– SilentlyContinue

– Stop

– Inquire

Error Action Demo

Traps

 You can only trap exceptions

 Traps can handle any exception or a specific
type

 You can run PowerShell commands when a
trap catches an error

trap [[<error type>]] {

 #your code here

}

Traps – Scope

 PowerShell looks for trap handlers in the
current scope first

 Break = terminate current scope and pass
exception up the scope hierarchy

 Return = Pass a value (optional) and exit
current scope

 Continue = go to next line and no exception

 Help about_trap

Trap Demo

A PowerShell v1 Function

 Let’s walk through a sample function

Try to Catch Me

 PowerShell v2

 Try {} Catch {} Finally{}

 You must have at least one Catch or Finally
scriptblock

 Help about_try_catch_finally

Try Catch Demo

Scripting PowerShell 2.0

 Advanced Functions

 Use cmdlet binding

 Include comment based help with examples

 Much easier to create cmdlet-like tools

 Help about_functions*

A PowerShell 2.0 Function

 Let’s walk through a simple function

Debugging

 Where Reality Does Not Meet Expectation

 Syntax Errors

 Logic Errors

 Squash bugs with a script editor

 Follow a process – Never Guess!

Debugging

 Add Write-* commands to your code

 Debug line by line (trust me)

 Set-PSDebug

 Set-PSBreakpoint

Set-PSDebug

 Step

 Strict

 Trace
– 0 Turn script tracing off

– 1 Trace script lines as they are executed

– 2 Trace everything

PSBreakpoint

 PowerShell 2.0

 *-PSBreakpoint cmdlets

 Works locally only

 PowerShell stops at breakpoints

 Help about_debuggers

Debugging Demo

Scripts as Tools

 Create single purpose and flexible scripts and
functions

 Dot Source function script files as needed
– Profile

– PowerShell session

– PowerShell scripts

Putting It All Together

 Let’s examine a PowerShell 2.0 function-
based tool

Best Practices

 Use full cmdlet and parameter names

 No aliases

 Document

 Include verbose/trace/debugging from the
beginning

 Think “object”-ively

Best Practices

 Think modularly

 Use a standard template and format

 Sign your scripts

 Use source control

 Use a script editor

Resources

 Windows PowerShell 2.0: TFM (Don Jones &
Jeff Hicks)

 PowerShell in Action (Bruce Payette)

 Windows PowerShell 2.0 Best Practices (Ed
Wilson)

 ScriptingAnswers.com

 PowerShellCommunity.org

 Jdhitsolutions.com/blog

 Blogs.msdn.com/PowerShell

Questions

Now’s the time to pick my brain

Thank You

 Enjoy the conference

 Meet people

 Learn a lot

 Have Fun!

 Jdhitsolutions.com/blog

