
Scripting, Error Handling

and Debugging in

Windows PowerShell

Jeffery Hicks
Prof. PowerShell

Pre-requisites for this presentation:

 1) Basic PowerShell Experience

 2) Some Scripting Experience will help

Level: Intermediate

Agenda

 Why Script?

 Functions or Scripts?

 Scripts as Tools

 Construct Review

 Error Handling and Traps

 A PowerShell v1 Function

 Scripting PowerShell 2.0

 Debugging

 Putting It All Together

 Best Practices

Sorry..

 We won’t be covering these topics
– Modules

– Windows Form based scripts

– Script security

– Comment Based Help

– Trace-Command

 But, demos will be available on my blog

Why Script?

 Saves typing

 Automate complex tasks

 Share the love

Functions or Scripts?

 Both can accept parameters

 Functions can be written like cmdlets

 Use Functions to modularize

 Use Scripts to organize

Parameters

 Customize a function or script

 Makes your code re-usable

 Positional by default

 Cast parameters

 Provide default values

Parameters

Function Foo {

 Param ([string]$name,[int]$x=3)

 #your code

}

Foo jeff 5

Foo 5

Foo –name jeff –x 5

Simple Function

 Let’s look at a simple basic function

Functions and the Pipeline

 Begin {}

 Process { $_ }

 End {}

 Scriptblock use is optional

Function Pipeline Demo

Functions or Filters

 A filter is a function with another name

 To pipeline or not, that is the question

 In v2 it’s basically all functions

Constructs

 If..(..ElseIf..)..Else

 Switch

 Do While/Until

 For

 ForEach

If

If (some condition is true) {

 #do this code

}

 No End If

 Bracket positions don’t matter

If Else

If (some condition is true) {

 #do this code

}

Else {

 #do this code

}

If ElseIf

If (some condition is true) {

 #do this code }

Elseif (some condition is true) {

 #do this code }

Else {

 #do this code }

 No limit to number of ElseIf

 Only first matching code block executes

Switch

Switch (some variable) {

 A {#run this code if variable
matches}

 B {#run this code if variable
matches}

 C {#run this code if variable
matches}

 Default {#run this code if no
matches}

}

Switch

 Useful for multiple condition matching

 Supports regular expressions

 Can be used like Select Case

 Default only runs if no match is made

 Help about_switch

Do While

Do {

 #run this code

} While (some condition is true)

 Script block will always execute at least once

 Make sure your condition will change

Do Until

Do {

 #run this code

} Until (some condition is true)

 Script block will always execute at least once

 Make sure your condition will change

While

While (some condition is true) {

 #run this code

}

 Script block may not run

 Make sure your condition will change

For

For ($i=0;$i –lt 5;$i++) {

 $i

 #do something

}

 Always define starting condition

 Make sure your condition can be met

ForEach

$items=get-childitem $env:temp

Foreach ($x in $items) {

 #do something with $x

 write $x.name

}

 VBScript Like

 Easier to understand

 Name your own variable

ForEach Pipeline Alternative

get-childitem $env:temp | Foreach {

 #do something with each object

 write $_.name

}

Error Handling and Trapping

 Errors are Exceptions

 Separate the error message from the
exception

 You can only trap exceptions

Error Action

 $errorActionPreference

 -ErrorActionPreference (-ea)
– Continue

– SilentlyContinue

– Stop

– Inquire

Error Action Demo

Traps

 You can only trap exceptions

 Traps can handle any exception or a specific
type

 You can run PowerShell commands when a
trap catches an error

trap [[<error type>]] {

 #your code here

}

Traps – Scope

 PowerShell looks for trap handlers in the
current scope first

 Break = terminate current scope and pass
exception up the scope hierarchy

 Return = Pass a value (optional) and exit
current scope

 Continue = go to next line and no exception

 Help about_trap

Trap Demo

A PowerShell v1 Function

 Let’s walk through a sample function

Try to Catch Me

 PowerShell v2

 Try {} Catch {} Finally{}

 You must have at least one Catch or Finally
scriptblock

 Help about_try_catch_finally

Try Catch Demo

Scripting PowerShell 2.0

 Advanced Functions

 Use cmdlet binding

 Include comment based help with examples

 Much easier to create cmdlet-like tools

 Help about_functions*

A PowerShell 2.0 Function

 Let’s walk through a simple function

Debugging

 Where Reality Does Not Meet Expectation

 Syntax Errors

 Logic Errors

 Squash bugs with a script editor

 Follow a process – Never Guess!

Debugging

 Add Write-* commands to your code

 Debug line by line (trust me)

 Set-PSDebug

 Set-PSBreakpoint

Set-PSDebug

 Step

 Strict

 Trace
– 0 Turn script tracing off

– 1 Trace script lines as they are executed

– 2 Trace everything

PSBreakpoint

 PowerShell 2.0

 *-PSBreakpoint cmdlets

 Works locally only

 PowerShell stops at breakpoints

 Help about_debuggers

Debugging Demo

Scripts as Tools

 Create single purpose and flexible scripts and
functions

 Dot Source function script files as needed
– Profile

– PowerShell session

– PowerShell scripts

Putting It All Together

 Let’s examine a PowerShell 2.0 function-
based tool

Best Practices

 Use full cmdlet and parameter names

 No aliases

 Document

 Include verbose/trace/debugging from the
beginning

 Think “object”-ively

Best Practices

 Think modularly

 Use a standard template and format

 Sign your scripts

 Use source control

 Use a script editor

Resources

 Windows PowerShell 2.0: TFM (Don Jones &
Jeff Hicks)

 PowerShell in Action (Bruce Payette)

 Windows PowerShell 2.0 Best Practices (Ed
Wilson)

 ScriptingAnswers.com

 PowerShellCommunity.org

 Jdhitsolutions.com/blog

 Blogs.msdn.com/PowerShell

Questions

Now’s the time to pick my brain

Thank You

 Enjoy the conference

 Meet people

 Learn a lot

 Have Fun!

 Jdhitsolutions.com/blog

