Microsoft® X

tech-ed °

North America l 20"0

JUNE 7-10, 2010 | NEW ORLEANS, LA



SESSION CODE: WCL313

Paradigm Shift: Microsoft Visual Basic
Scripting Edition to Windows PowerShell

Jeffery Hicks
Principal Consultant
JDH Information Technology Solutions




Who Am I?

@ Windows PowerShell MVP

® VBScript author
@ Advanced VBScript for Windows Administrators (with Don Jones)
@ WSH and VBScript Core: TFM
@ PowerShell author
@ Windows PowerShell 2.0: TFM (with Don Jones)
® Managing Active Directory with Windows PowerShell: TFM

IT trainer and consultant
@ http://jdhitsolutions.com/blog
@ http://twitter.com/JeffHicks




Agenda
@ PowerShell vs VBScript
® Paradigm Shifts

® Practical Examples

@ Best Practices

@ Questions

®

Next Steps




What'’s this all about?

@ Windows PowerShell is the new management technology we will all be
using

® Requires a new mind-set compared to previous management and
scripting techniques and tools

“Scripters” need to transition . What do they need to know?
My focus is on administrative automation




What's Right about VBScript?

@
@
@
@

VBScript is still a good thing, offers value and serves a need
It is familiar and comfortable

A decade+ of expertise and scripts that you can draw on
Can run just about anywhere with very little effort




What'’s Wrong with VBScript?

Never designed for Windows administration

Relatively complicated language of functions, statements and commands
Coding then execution. A lot of rework and effort to get things right.
Requires scripting expertise

Some objects -- but a lot of parsing required.

A long history of security vulnerabilities

© ©¢6 606 ©¢ o o




What is Windows PowerShell?

@ First and foremost an interactive management shell. Type a command and
something happens.
A batch-file like scripting language

@ Part of Microsoft’s Common Engineering Criteria which means new products
must be managed via PowerShell

@ So the question is not if you will use PowerShell, but when.




Windows PowerShell Features and Benefits

@ Based on .NET Framework
@ |tis arich object-based shell
® .NET is at the core of everything Microsoft

Backwards compatible (with a few exceptions, mostly in the ISE)
PowerShell is focused on discoverability of itself and your network

PowerShell is designed to be easy to learn and use




Interactive and Flexible

@ There is no “compiling”. Run a command and make it happen.

No script engine. Run the script in a PowerShell window almost like any
other command

PowerShell expressions are flexible, using command parameters




Cmdlets and Providers

@ Cmdlets are PowerShell’s core “command-lets” that work with objects

® Written in a .NET language (not that it makes any difference). You don’t
have to write cmdlets.

@ Standardized and consistent in design and implementation

Full help documentation including plenty of examples and up-to-date
online help.




Cmdlets and Providers

Providers are great for hierarchical storage like the file system and registry
Providers are not great for configuration information (in my opinion)

Providers offer PSDrives that can be accessed via script in ways that
VBScript could never do

@ Application/Server specific providers: AD, IIS, WSMan




Cmdlets and Providers

DEMO



PowerShell Scripting is More Secure

@ Secure by design
@ Associated with Notepad
® Require full path to run a script
@ Supports digital signatures
@ Execution Policy Restricted by default, which means you can only use the
shell interactively.
Recommended minimum policy is RemoteSigned

® Group Policy configured and enforced. Recommended.




It’s All About the Objects

Windows PowerShell can use .NET and COM objects
Create your own custom object

Everything is an object in Windows PowerShell

Use Get-Member to discover an object’s characteristics (ie properties and
methods)

© © o ©

@ Use cmdlets or an object method to manipulate objects




The Power of the Pipeline

@ Objects move through the pipeline via cmdlets, your scripts or functions
® QObijects can change through the pipeline

® At the end of the pipeline Windows PowerShell displays remaining objects




Pipeline Example

PS C:\> Get-Service | Where {$_.Status -eq 'running'}

Get all Service Only keep objects
objects that are running
running running running running
running stopped running stopped Stopped are
removed from
the pipeline
stopped stopped




Pipeline Example Results

PS C:\> Get-Service | Where {$_.Status -eq 'running'}

Status

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

Name

Appinfo
AudioEndpointBu...
AudioSrv

BFE

BITS

bthserv

cmdAgent
ConfigFree Gadg...
ConfigFree Service
CryptSvc

DisplayName

Application Information

Windows Audio Endpoint Builder
Windows Audio

Base Filtering Engine

Background Intelligent Transfer Ser...
Bluetooth Support Service

COMODO Internet Security Helper Ser...
ConfigFree Gadget Service

ConfigFree Service

Cryptographic Services




Objects and Properties

DEMO



File System

DEMO



Windows Management Instrumentation

DEMO



Return vs Write-Output

@
@
@
@
@

VBScript functions return single “value”
PowerShell functions multiple “values” (think objects)
Return keyword means 1 value is “returned”

Write-Output sends to the pipeline
Think “Writing objects to the pipeline” instead of returning values




Return vs Write-Object

DEMO



Selecting vs Formatting

@ Select objects and properties anywhere in the pipeline
@ Formatting is a separate process

® Format-Table

® Format-List

® Format-Wide

@ Formatting directives should be at end of your expression except when
outputting to a file or printer.




Selecting vs Formatting

DEMO



Best Practices

@ Always think “object-ively” Don’t spin your wheels parsing text.
® Leverage the pipeline but don’t feel you have to use complex one-liners
® Focus on re-use and modularization in scripts and functions.




Best Practices

@ Use cmdlets whenever possible. Use “raw” .NET objects where there are
no alternatives.

Use Write-Host for messages Write-Output for pipelined data
Build-in trace messages from the beginning

Keep formatting separate from your script or function




Best Practices

@
@
@
@

No aliases in scripts. Use full cmdlet names
Use full parameter names in scripts
Use standard naming conventions where possible for scripts and functions

Documentation (do | really have to say it?). Build it in from the very
beginning




Your Action Plan

(@

@
@
@
@

Do Nothing (don’t re-invent the wheel). If you have VBScripts that work,
continue to use them.

Deploy, configure and secure Windows PowerShell 2.0

Invest in training and tools

Look for “Quick Wins” that demonstrate Windows PowerShell’s strengths
Begin using Windows PowerShell daily




Resources

@
@
@
@
O
@

PoshCode.org

The Lonely Administrator (http://jdhitsolutions.com/blog)

Windows PowerShell 2.0: TFM by Don Jones and Jeffery Hicks

Windows PowerShell in Action 2"d Ed. By Bruce Payette

Windows PowerShell Team blog (http://blogs.msdn.com/powershell)
Prof. PowerShell (http://mcpmag.com/articles/list/prof-powershell.aspx)




Resources

Microsoft®

° - ® .
tech-ed Microsoft: | Leaming
Sessions On-Demand & Community Microsoft Certification & Training Resources

www.microsoft.com/teched www.microsoft.com/learning

- : msdn
-
Microsoft
Resources for IT Professionals Resources for Developers

http://microsoft.com/technet http://microsoft.com/msdn




Microsoft

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.




