
POWERSHELL WORKFLOW 

BASICS 
Jeffery Hicks 

Windows PowerShell MVP 

jhicks@jdhitsolutions.com 



WHO AM I? 

 Windows PowerShell MVP 

 PowerShell Author  

 PowerShell in Depth (with Don Jones and Richard 

Siddaway) 

 Windows PowerShell 2.0: TFM (with Don Jones) 

 Managing Active Directory with Windows 

PowerShell: TFM 2nd Ed. 

 IT trainer and consultant 

 http://jdhitsolutions.com/blog 

 http://twitter.com/jeffhicks 



AGENDA 

 Definitions 

 Requirements 

 Limitations 

 Building Workflows 

 Syntax 

 Resources 

 Q&A 



A NOTE… 

 All demos will be made available 

 I'm using a beta of PowerShell 3.0 so no guarantees 



DEFINITIONS - WHAT IS A WORKFLOW? 

 A robust multi-machine orchestration engine 

 Designed for long running unattended tasks 

across potentially thousands of machines 

 Persistent states can survive reboots and 

network interruptions 

 Can be integrated with WCF Services and 

AppFabric 



DEFINITIONS - WHAT IS A WORKFLOW? 

 Robust 

 Persistence via check points 

 Suspend and Resume capabilities 

 Performance and Scalability 

 Parallel tasks 

 Connection pooling 

 Connection throttling 

 PowerShell Based 

 Use existing cmdlets 

 No need to master XAML 

 Built in parameters for multi-machine management 



DEFINITIONS - WHAT IS A WORKFLOW? 

 Workflow activities are isolated 

 All data and objects are serialized 

 Objects are strongly typed 

 Static scoping 

 



WORKFLOW SCENARIOS 

 Server deployment 

 Server configuration/remediation 

 User provisioning 

 Private cloud deployments 

 Sharepoint configuration 

 Any business workflow that can be orchestrated 

with command line tools. 



REQUIREMENTS 

 Built on .NET Framework 4.0 and Windows 

Workflow Foundation 

 Requires PowerShell 3.0 

 Requires PowerShell 3.0 remoting 

 Leverages PowerShell's job infrastructure 



REQUIREMENTS: REMOTING 

 Workflows connect to machines using WSMan 

protocol 

 Connects to the default Workflow session 

configuration 

PS C:\> get-pssessionconfiguration 
microsoft.powerShell.workflow 
 

 Important defaults: 

 Max persistence storage 10GB 

 Max memory per shell 1GB 

 Admin permissions required 

 Be very careful of changing this configuration 

 



LIMITATIONS AND GOTCHAS 

 All objects and data must be "serializable" 

 Must use full cmdlet and parameter names 

 No positional parameters 

 No Begin/Process/End scriptblocks 

 No "eventing" 

 No Traps - Use Try/Catch 

 Not intended to be interactive - can't use Write-

Host. 

 On comment based help - must use maml 

 Pay close attention to scope! 



WORKFLOW ARCHITECTURE 

Workflow Engine 
PowerShell Client 

Session

PowerShell 

Workflow 

“Service”

WinRM Client

Client

PSRP/PowerShell

Managed Node

Remoting 

Commands/API

Operation Host Process

Operations 

Host

WSMan/CIM

Managed Node



BUILDING WORKFLOWS 

 Don't replace "Function" with "Workflow" 

 Start new and plan out your activities 

 Minimize sharing of data or variables across 

activities 

 PowerShell turns your workflow into XAML 

 Workflow is a command type 

 
PS C:\> get-command -commandtype Workflow 



SYNTAX: INLINESCRIPT 

 Send PowerShell commands to remote 

machine(s) 

 Runs out-of-process 

 Runtime command validation at runtime 

 This is really a series of Invoke-Command 

activities 

 



SYNTAX: PARALLEL 

 Execute a collection of activities independently 

and  in parallel 

 Foreach -Parallel 

 The parameter only works in a workflow 

 Run a set of commands in parallel for each object in a 

collection 

 Parallel key word 

 Run a set of commands simultaneously and in 

parallel 

 Runs in a new scope 

 Often used to run a series of Sequences 



FOREACH -PARALLEL 

Foreach -parallel ($item in $objects) { 

  MyCommand1 $item 

  MyCommand2 $item 

  MyCommand3 $item 

} 

 

Item1 

MyCommand1 

MyCommand2 

MyCommand3 

Item2 

MyCommand1 

MyCommand2 

MyCommand3 

Item3 

MyCommand1 

MyCommand2 

MyCommand3 



PARALLEL 

Parallel { 

 MyCommand1 

 MyCommand2 

 MyCommand3 

} 

MyCommand1 

MyCommand2 

MyCommand3 



SYNTAX: SEQUENCE 

 Execute a collection of tasks in order 

 Often used with Parallel 

 Watch out for scope! 

 



SYNTAX: SEQUENCE 

Parallel { 

$var=123 

 Sequence { 

  MyCommand1 $workflow:var 

 } 

 Sequence { 

  MyCommand2 $workflow:var 

 } 

} 

 



SYNTAX: SCOPE AND VARIABLES 

 Workflows uses static scopes, i.e. PowerShell 

won't "search" for a variable 

 Can use $Workflow:myvar 

 Access "out of scope" variables with 

$Using:MyVar 

 Read-only 

 Available from InlineScript 

 



SYNTAX: ASJOB 

 Run any workflow with -asjob 

 Use job cmdlets to manage 

 Import PSWorkFlow module to add new job type 

definitions  

 Useful with suspended workflows 



SYNTAX: COMMON PARAMETERS 

 All workflows have a set of common parameters 

 They do not need to be defined in the workflow 

 PSComputerName 

 PSCredential 

 PSConnectionRetryCount 

 PSActionRetryCount 

 PSPersist 



SYNTAX: COMMON DATA 

 Result 

 PSUserName 

 PSVerbose 

 WorkflowCommandName 

 PSProgress 

 PSWarning 

 PSError 

 PSDebug 

 JobName 

 PSWorkflowPath 

 Input 



SYNTAX: PERSISTENCE 

 Workflows can be made persistent to survive 

interruptions 

 By default restarts the workflow unless… 

 Set persistence per activity 

 Checkpoint-Workflow 

 Persist 

 Suspend-Workflow 

 Set persistence for the entire workflow 

 -PSPersist common parameter 

 Set to $True: -pspersist $true 



DEMOS 



MOVING ON 

 Nested workflows 

 Workflows calling workflows 

 Suspending and resuming 

 Troubleshooting and debugging 

 Importing workflows from Visual Studio 

Workflow Designer 



QUESTIONS 



MORE RESOURCES 

 PowerShell in Depth: An Administrators Guide 
by Don Jones, Richard Siddaway and Jeffery 
Hicks (Manning Press, in production) 

 Learn PowerShell in a Month of Lunches, 2nd Ed. 
By Don Jones and Jeffery Hicks (Manning Press, 
in production) 

 Windows PowerShell Team blog 
(http://blogs.msdn.com/powershell) 

 The Lonely Administrator 
(http://jdhitsolutions.com/blog) 

 Prof. PowerShell  
(http://mcpmag.com/articles/list/prof-
powershell.aspx 



THANK YOU 

 http://jdhitsolutions.com/blog 

 jhicks@jdhitsolutions.com 

 


